3 SAINT MARKS 3 SAINT MARKS, NY

THERMAL ANALYSIS OF MOCK UP IBAR-INT-ST-23-UFC-13-R5

DATE: 06/06/2023

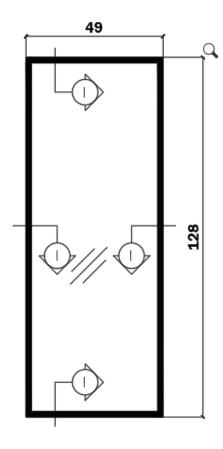
3 SAINT MARKS 06.06.2023

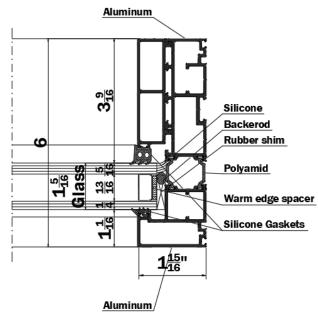
THERMAL ANALYSIS OF MOCK UP

IBAR-INT-ST23-UFC-TC-13-R4

Revision Notes

<u>Date</u>	<u>Revision</u>	<u>Description</u>
04.17.23	0	First Submittal
04.24.23	1	Therm Calculation
05.17.23	2	Remark Revisions
05.19.23	3	Therm version revision
05.24.23	4	Added materials list
06.06.23	5	Boundary Condition Revision


TABLE of CONTENTS


1. INTRODUCTION	4
1.1. Referenced Standards and Norms	5
1.2. Technical Features in terms of Building Physics	5
1.3. Methodology of Calculation	g
1.4. MATERIALS	11
2. ASSESSMENT OF VISION FRAME PROFILES	12
2.1. CONDENSATION	12
2.1.1. Detail-1	12
2.2. U VALUE	15
2.2.1. Detail-1	15
3. CONCLUSION	16
4 ADDENDIY	17

IBAR-INT-ST23-UFC-TC-13-R4

1. INTRODUCTION

This report presents condensation risk assessment and U Value analysis of unitized window wall system for 3 Saint Marks, NY.

IBAR-INT-ST23-UFC-TC-13-R4

1.1. Referenced Standards and Norms

Condensation risk assessment and U Value analysis is based on the standards which are given below.

ISO 15099 Thermal Performance of windows, doors and shading devices

NFRC 100 Procedure for Determining Fenestration Product U-factors

NFRC 200 Procedure for Fenestration Product Solar Heat Gain Coefficient and Visible

Transmittance at Normal Incidence

NFRC 500 Procedure for Determining Fenestration Product Condensation

Resistance Values

1.2. Technical Features in terms of Building Physics

Boundary conditions and initial conditions of the analysis is indicated below.

Outdoor temperature : 14°F

Indoor temperature : 72°F

Relative humidity (RH) : 30 %

Dewpoint : 60 °F

Temperature Difference for U Value Calculation: 69.8 °F -0.4 °F = 70.2 °F

Glass U winter (λ) : 0.247 BTU/hr-ft-°F

Used software for thermal analysis : Therm 7.8.55 and Window 8.0

Table 4-2 – Boundary Conditions

	Radiation	Convective Film Coefficient Boundary			
Boundary Condition	Model	Tilt = 90° W/m²K (Btu/h·ft²·°F)	Tilt = 20° W/m ² K (Btu/h·ft ² ·°F)		
NFRC 100-2001 Exterior	Blackbody	26.00 (4.578)	26.00 (4.578)		
Interior Aluminum Frame	Automatic	3.29 (0.579)	4.65 (0.819)		
(convection only)	Enclosure Model				
Interior Thermally Broken	Automatic	3.00 (0.528)	4.09 (0.720)		
Frame (convection only)	Enclosure Model				
Interior Thermally	Automatic	3.12 (0.549)	4.32 (0.761)		
Improved Frame	Enclosure Model				
(convection only)					
Interior Wood/Vinyl	Automatic	2.44 (0.429)	3.09 (0.544)		
Frame (convection only)	Enclosure Model				
Interior Glazing System boundary condition	Automatic Enclosure Model	Depends on the WINDOW calculations for the imported glazing system			

Boundary Conditions

 h_{in} value of interior thermally broken frame is determined as 3.00 W/m²K (0.528 BTU/h.ft². °F) by considering Table 4.2.

 $h_{in} = 3.29 \text{ W/m}^2\text{K} (0.579 \text{ BTU/h.ft2. }^\circ\text{F})$

 R_{in} = 0.304 m²K/W (1.727 ft². °F h / BTU)

Besides, h_{out} value is determined 26 W/m²K as NFRC 100 specifies.

Glazing

				١	Visib l e Light Solar En			Solar Energy		Thermal Properties	
Make-up	Make-un Name	Glass 1 & Coating		Transmitta Ref l ectance		nce Transmitta		Solar Heat Gain	U-Value		
				Visible (t _V %)		p _V % in	Solar (t _e %)	ρ _e % out	Coefficient (SHGC)	Winter Night (Btu/hr-ft2-F)	Summer Da (Btu/hr-ft²-f
efau l t Ma	ke-up 06	SunGuard ® SN 75 HT (CE) on Guardian UltraClear ® Float Glass (CE)	Guardian UltraClear ® Float Glass (CE)	75	13	14	36	48	0.38	0.247	0.151
					Out	tdoors					_
GLASS 1		ultraClear® s = 1/4" (6mm		CE)	Out	#1	Guard® SN 75	HT (CE)			1
GLASS 1 GAP 1	Thickness		1)	1 22	Out	#1	Guard® SN 75	HT (CE)			-
	Thickness 19 Guardian	s = 1/4" (6mm	n) Argon, 20mm Float Glass (Out	#1	Guard® SN 75	HT (CE)			
GAP 1	Thickness 19 Guardian Thickness	s = 1/4" (6mm 0% Air, 90% A n UltraClear®	n) Argon, 20mm Float Glass (m)		Out	#1 #2 Sun0			idow Height	= 2 meters	
GAP 1	Thickness Guardian Thickness Total Uni	s = 1/4" (6mm 0% Air, 90% A n UltraClear® s = 3/8" (10m	n) Argon, 20mm Float Glass (m) 1 13/32 in	CE)	Out	#1 #2 SunG #3 #4			dow Height	e = 2 meters	

IBAR-INT-ST23-UFC-TC-13-R4

August-Roche Magnus Formula;

The Magnus-Tetens formula for the vapor pressure is given by

$$p_{w} = 0.6105 \cdot e^{(aT/(b+T))}$$
 [kPa] (1.1) with a=17.27 b=237.7 °C

and Td is in °C.

$$a=6.105$$
 millibar; $b=17.27$; $c=237.7^{\circ}\text{C}$: $0^{\circ}\text{C} \le T \le +60^{\circ}\text{C}$ $(\pm 0.4^{\circ}\text{C})$

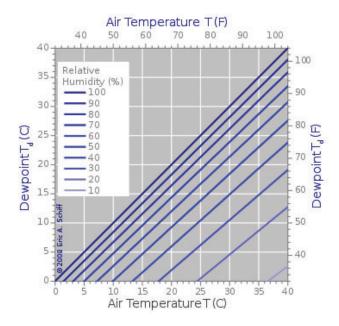
The relative humidity and vapour saturation pressure have direct relation with the vapor pressure by

$$p_{W} = RH \cdot p_{WS} \tag{1.2}$$

When air is saturated, the air has 100% relative humidity and its temperature is equal to its dew point temperature.

$$p_{w} = RH \cdot p_{ws}$$

$$\Rightarrow 0.6105 \cdot \exp\left[\frac{a \cdot T_{d}}{b + T_{d}}\right] = 0.6105 \cdot RH \cdot \exp\left[\frac{a \cdot T}{b + T}\right]$$


$$\Rightarrow T_{d}\left(T, RH\right) = \frac{b \cdot \alpha(T, RH)}{a - \alpha(T, RH)}$$
(1.3)

where

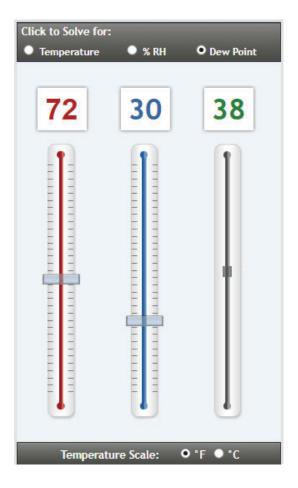

$$\alpha(T, RH) = \ln(RH) + \frac{a \cdot T}{b + T}$$
(1.4)

Table 1 indicates the corresponding dew points with respect to relative humidity and temperature values according to August-Roche Magnus approach. If temperature of any surface which is in contact with indoor environment is lower than interior dew point, there is condensation formation at the specified surface. Minimum temperature is mostly seen on aluminium profile surface or glass surface.

IBAR-INT-ST23-UFC-TC-13-R4

The change of dew point value according air temperature vs. dew point temperature

1.3. Methodology of Calculation

Calculations is made according to the NFRC norms and ISO 15099. Boundary conditions are defined according to image below.

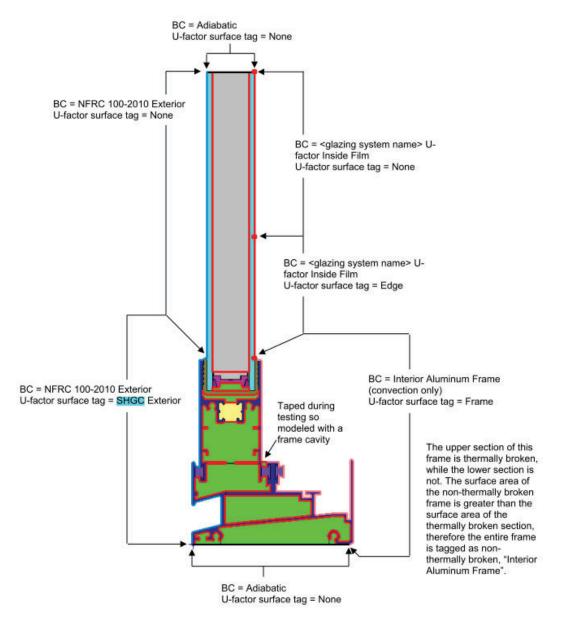


Figure 6-25. Defining the boundary conditions for a cross section.

3 SAINT MARKS

06.06.2023

THERMAL ANALYSIS OF MOCK UP

 $U_{t} = \frac{\left[\sum (U_{f} * A_{f}) + \sum (U_{d} * A_{d}) + \sum (U_{c} * A_{c}) + \sum (U_{d} * A_{dc}) + \sum (U_{c} * A_{c})\right]}{A_{pf}}$

[4-1]

 U_t = Total product U-factor, W/m2-oK, (Btu/hr-ft2-oF).

 Projected fenestration product area, m² (ft²). Apt

= Frame U-factor, W/m2-oK, (Btu/hr-ft2-oF). U

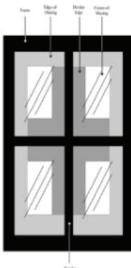
= Frame area, m2 (ft2). A_{ℓ}

= Divider U-factor, W/m2-oK, (Btu/hr-ft2-oF). Ud

 A_d = Divider area, m2 (ft2).

U. = Edge-of-glazing U-factor, W/m2-oK, (Btu/hr-ft2-oF).


= Edge-of-glazing area, m2 (ft2). A_e


= Edge-of-divider U-factor, W/m2-oK, (Btu/hr-ft2-oF). U_{de}

= Edge-of-divider Area, m2 (ft2). Ade

= Center-of-glazing U-factor, W/m2-oK, (Btu/hr-ft2-oF). U.

= Center-of-glazing area in ft2 (m2). A.

Overall SHGC

$$SHGC = SHGC_0 + SHGC_c(SHGC_1 - SHGC_0)$$
 Equation 4-1

Where

 $SHGC_0$ = The total fenestration product SHGC for the center-

of glazing SHGC of 0.0

 $SHGC_1$ = The total fenestration product SHGC for the center-

of-glazing SHGC of 1.0

Overall VT

$$VT = VT_0 + VT_C(VT_1 - VT_0)$$
 Equation 4-2

Where

 VT_0 = The total fenestration product VT for the center-of-

glazing VT of 0.0

 VT_1 = The total fenestration product VT for the center-of-

glazing VT of 1.0

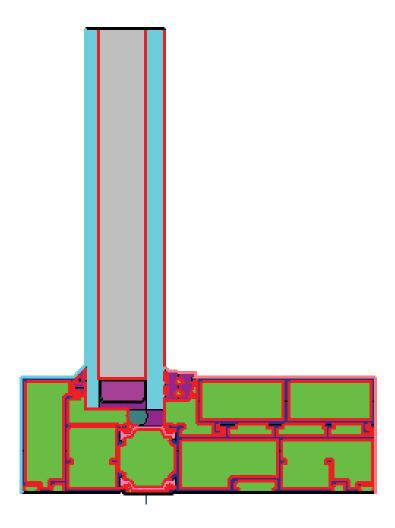
3 SAINT MARKS 06.06.2023

THERMAL ANALYSIS OF MOCK UP

IBAR-INT-ST23-UFC-TC-13-R4

1.4. MATERIALS

1.4. MATERIALS

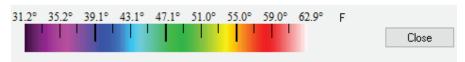

Materials						
Name	Conductivity Btu/h-ft-F	Emissivity	Colour			
Silicone-Gasket	0.202	0.9				
Aluminium Alloy (painted)	92.446	0.9				
Technoform warm edge space-polypropylene	0.098	0.9				
Polyamide	0.173	0.9				
Backing Rod	0.029	0.9				

IBAR-INT-ST23-UFC-TC-13-R4

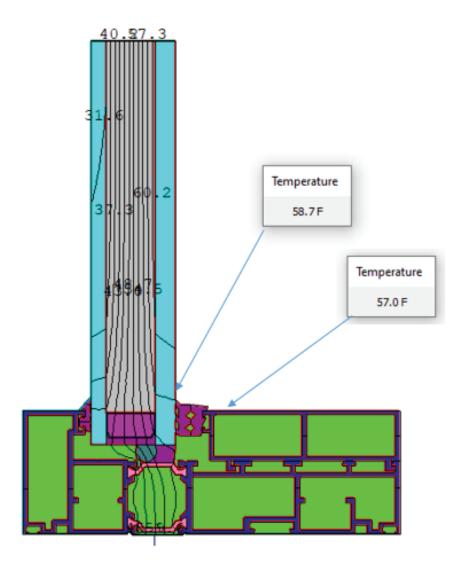
2. ASSESSMENT OF VISION FRAME PROFILES

2.1. CONDENSATION

2.1.1. Detail-1


Detail

IBAR-INT-ST23-UFC-TC-13-R4

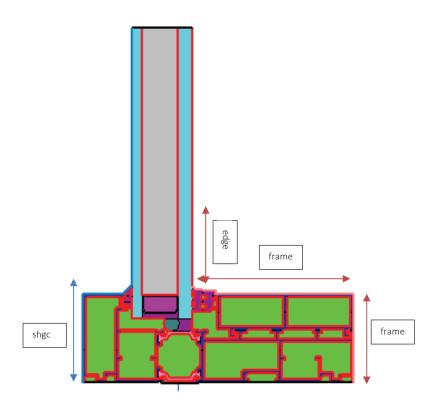


Temperature Distribution Plot

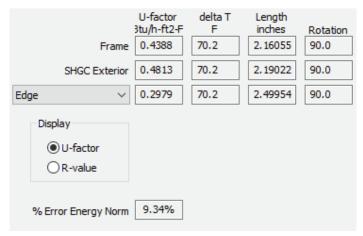
Color Legend

IBAR-INT-ST23-UFC-TC-13-R4

Temperature Distribution of the Profile with Isothermal Lines (Imperial Units)


Result:

Minimum temperature on aluminum surface = 57.0°F > 38.0°F There is no condensation


IBAR-INT-ST23-UFC-TC-13-R4

2.2. U VALUE

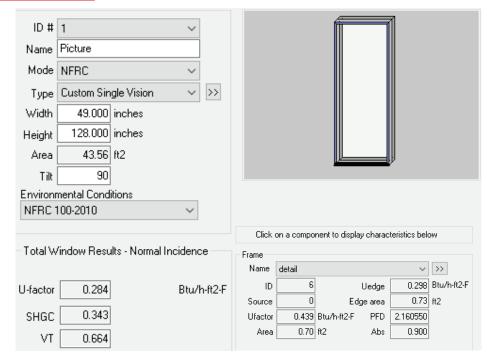
2.2.1. Detail-1

U-Factors

U-Factors

IBAR-INT-ST23-UFC-TC-13-R4

THERMAL ANALYSIS OF MOCK UP


3. CONCLUSION

There is a condensation in all detail. The overall U and the Shgc calculation result value are shown below.

 Uw
 : 0.284 btu/h.ft²F

 Shgc
 : 0.343

 VT
 : 0.664

4. APPENDIX

APPENDIX A BASIC SET OF GENERIC THERMOPHYSICAL PROPERTY VALUES OF MATERIALS

Table A.1: Thermophysical Properties of Solid Materials

Name		Conduct k	Source ¹	Emissivity ε	
	W/m•K		Btu•in/hr•ft²•°F	-	
Elastomers					
Butadiene	0.250	0.144	1.733	1,15	0.9
Butyl rubber (isobutene, solid/hot melt)	0.240	0.139	1.664	1,3	0.9
Expanded rubber (rigid)	0.032	0.018	0.222	2	0.9
Ethylene propylene diene monomer					
(EPDM)	0.250	0.144	1.733	1	0.9
Foam Rubber	0.060	0.035	0.416	1	0.9
Neoprene (polychloroprene)	0.230	0.133	1.595	1	0.9
Polyisobutylene (PIB)	0.200		1.387	1,15	0.9
Polysulphide	0.400	0.231	2.773	1,15	0.9
Polymers		•	•		
PVB	0.224	0.129	1.553	13	0.9
Polyamide (PA 66/Nylon - 25% glass fill)	0.300	0.173	2.080	15	0.9
Polyamide (Nylon – no fill)	0.250	0.144	1.733	15	0.9
Polycarbonate	0.200	0.116	1.387	1	0.9
Polypropylene	0.220	0.127	1.525	1	0.9
Polystyrene	0.160	0.092	1.109	1	0.9
Polytetrafluoroethylene(PTFE)	0.250	0.144	1.733	1	0.9
Polyurethane	0.250	0.144	1.733	1	0.9
Polyurethane foam	0.050		0.347	1	0.9
Polyvinylchloride (PVC) flexible	0.140		0.971	1	0.9
PVC/Vinyl (rigid)	0.170	0.098	1.179	1	0.9
Silicone	0.350	0.202	2.427	1	0.9
Polyurethane (urethane) thermal break	0.210	0.121	1.456	1	0.9
Composites					
Fiberglass	0.300	0.173	2.080	9	0.9
i ibelgiass	0.300	0.173	2.000	3	0.9
Timbers					
Coniferous woods (Softwoods)	0.140	0.081	0.971	4	0.9
Deciduous woods (Hardwoods)	0.160	0.092	1.109	4	0.9

Name		Conduc	Source ¹	Emissivity ε	
	W/m•K		Btu•in/hr•ft²•°F	-	-
Wood based panels					
Fiberboard	0.140	0.081	0.971	1	0.9
Particleboard	0.180	0.104	1.248	1	0.9
Plywood	0.240	0.139	1.664	1	0.9
Tiywood	0.240	0.100	1.004	'	0.0
Metals				i i	
Aluminum alloys (mill finish)	160.000	92.446	1109.357	1,12	0.05
Aluminum alloys (anodized)	160.000	92.446	1109.357	1,12	0.8
Aluminum alloys (painted)	160.000	92.446	1109.357	1,12	0.9
Steel (plated)	50.000	28.890	346.674	1,6	0.05
Steel (painted)	50.000	28.890	346.674	1,0	0.03
Steel (rolled, ground)	50.000	28.890	346.674	1, 6	0.9
Steel (rolled, ground, plated)	50.000	28.890	346.674	1, 6	0.1
Steel Stainless (oxidized)	17.000	9.822	117.869	1, 6	0.8
Steel Stainless (buffed)	17.000	9.822	117.869	1, 6	0.0
Steel-galvanized sheet (0.14%C)	52.0	30.045	360.541	6, 17	0.2
Steel-galvanized sheet (0.14%C)	32.0	30.043	300.341	0, 17	0.2
(painted)	52.0	30.045	360.541	6, 17	0.9
(раппец)	52.0	30.043	300.341	0, 17	0.9
Glazing Materials					
Glass, Soda-Lime (Plate or Float)	1.000	0.578	6.933	1	0.84
Glass mosaic	1.200	0.693	8.320	1	0.84
Glass-Flint (lead)	1.400	0.809	9.707	2	0.84
Glass-Quartz	1.400	0.809	9.707	1	0.9
Acrylic sheet	0.200	0.116	1.387	1	0.9
, to fine choose	0.200	0.110	1.001	,	0.0
Insulating Materials					
Cellulosic fiber, loose fill	0.046	0.027	0.319	2	0.9
Cotton fiber	0.042	0.024	0.291	2	0.9
Expanded perlite, organic bonded	0.052	0.030	0.361	2	0.9
Expanded Polystyrene (EPS)	0.038	0.022	0.261	1	0.9
Extruded Polystyrene (XPS)	0.034	0.020	0.236	1	0.9
Felt	0.050	0.029	0.347	2	0.9
Glass fiberboard	0.035	0.020	0.243	2	0.9
Insulation fiberboard	0.049	0.028	0.340	8	0.9
Polyester fiber	0.040	0.023	0.277	1	0.9
Rock and slag wool batts	0.037	0.021	0.257	2	0.9
Vermiculite	0.077	0.044	0.532	10	0.9

NFRC 101-2020_[E0A4] page 31

3 SAINT MARKS

Name		Conduct k	Source ¹	Emissivity ε	
	W/m•K	Btu/hr•ft•F	Btu•in/hr•ft2•0F	-	-
Miscellaneous					
Foam glass	0.040	0.023	0.277	1, 11	0.9
Mohair (polyester) sweep	0.140	0.081	0.971	15	0.9
Desiccated matrix – butyl based	0.130	0.075	0.901	1	0.9
Desiccant-molecular sieve	0.100	0.058	0.693	14	0.9
Paints	N/A	N/A	N/A	_	0.9

¹ Numbers listed in this column refer to documents listed in Section 10.2

NFRC 101-2020_[E0A4] page 32

² Values are for 6% moisture content, see Appendix D. This value may be applied to products of any moisture content for the purposes of this document.

Table A.2: Thermophysical Properties of Gases (Source 5)

		Conductivity k = a + bT+cT ² [W/m•K]		Dynamic Viscosity μ = a + bT+cT² [kg/m•s]			
Gas	Coefficient a [W/m•K]	Coefficient b [W/m•K ²]	Coefficient c [W/m•K³]	Coefficient a [kg/m•s]	Coefficient b [kg/m•s•K]	Coefficient c [kg/m•s•K ²]	
Air*	2.873x10 ⁻³	7.760x10 ⁻⁵	0	3.723x10-6	4.94x10-8	0	
Argon	2.285x10 ⁻³	5.149x10 ⁻⁵	0	3.379x10-6	6.451x10-8	0	
Krypton	9.443x10 ⁻⁴	2.826x10 ⁻⁵	0	2.213x10-6	7.777x10-8	0	
Xenon	4.538x10 ⁻⁴	1.723x10 ⁻⁵	0	1.069x10- ⁶	7.414x10-8	0	
CO ₂	-5.8181x10 ⁻³	7.4714x10 ⁻⁵	0	8.5571x10- ⁷	4.7143x10-8	0	
SF ₆	1.300x10 ⁻²	0	0	7.214x10- ⁷	4.928x10-8	0	
Helium	4.524x10 ⁻²	3.6947x10 ⁻⁴	0	5.951x10- ⁶	4.664x10-8	0	
Neon	1.567x10 ⁻³	1.089x10 ⁻⁴	0	1.014x10- ⁵	7.045x10-8	0	
Octaflouropropane	-1.576x10 ⁻³	1.804x10 ⁻⁵	9.830x10 ⁻⁸	-2.009x10- ⁶	5.475x10-8	-2.054x10- ¹¹	

*Note: Nitrogen shall be treated as air

	С	Molecular Mass		
Gas	Coefficient a [J/kg•K]	[J/kg•K] - Coefficient b [J/kg•K²]	Coefficient c [J/kg•K³]	Mass [kg/kmol]
Air*	1.00274x10 ³	1.2324x10 ⁻²	0	28.97
Argon	5.21929x10 ²	0	0	39.948
Krypton	2.48091x10 ²	0	0	83.80
Xenon	1.58340x10 ²	0	0	131.30
CO ₂	5.76903x10 ²	9.18088x10 ⁻¹	0	44.01
SF ₆	4.1860X10 ²	0	0	146.10
Helium	5.1965x10 ³	0	0	4.000
Neon	1.03042x10 ³	0	0	20.180
Octaflouropropane	6.332x10 ²	-3.805x10 ⁻¹	3.119x10 ⁻³	188.02

*Note: Nitrogen shall be treated as air.

NFRC 101-2020_[E0A4] page 33

APPENDIX B EXTENDED SET OF GENERIC THERMOPHYSICAL PROPERTY VALUES OF MATERIALS

Table B.1: Thermophysical Properties of Solid Materials

Name	Density¹ (ρ)	(ρ) (k)			Source ²	Emissivity (ε)
	kg/m³	W/m•K	Btu/hr•ft•F	Btu•in/hr•ft²•°F		-
Elastomers						
Hard rubber (ebonite), solid	1200	0.170	0.098	1.179	1, 16	0.9
Natural rubber	910	0.130	0.075	0.901	1, 16	0.9
Rubber, Neoprene	146	0.036	0.021	0.246	10	0.9
Vulcanized rubber, hard	1190	0.160	0.092	1.109	2	0.9
Vulcanized rubber, soft	1100	0.100	0.058	0.693	2	0.9
Polymers						
ABS (extruded)	1200	0.200	0.116	1.387	20	0.9
ABS (molded)	3500	0.190	0.110	1.318	20	0.9
Acrylic	1050	0.200	0.116	1.387	1	0.9
Cellular Polyvinylchloride (cPVC)	577-705	0.067	0.039	0.462	19	0.9
Elastomeric foam, flexible	60-80	0.050	0.029	0.347	1	0.9
Epoxy resin	1200	0.200	0.116	1.387	1	0.9
Phenolic resin	1300	0.300	0.173	2.080	1	0.9
Polyacetate	1410	0.300	0.173	2.080	1	0.9
Polyester resin	1400	0.300	0.110	1.317	1	0.9
Polyethylene/polythene HD (high density	980	0.500	0.289	3.467	1	0.9
Polyethylene/polythene LD (low density	920	0.330	0.191	2.288	1	0.9
Polyethylene foam	70	0.050	0.029	0.347	1	0.9
Polymethylmethacrylate (PMMA)	1180	0.180	0.104	1.248	1	0.9
Polypropylene with 25% glass fiber	1200	0.250	0.144	1.733	1	0.9
Polyurethane foam, low density, open cell	10	0.042	0.024	0.291	2	0.9
Polyurethane foam, closed cell, aged 180 days	51	0.029	0.017	0.201	2	0.9
Silicone, filled	1450	0.500	0.289	3.467	1	0.9

NFRC 101-2020_[E0A4] page 34

Name	Density ¹				Source ²	Emissivity
	(ρ)		(k)			(ε)
	kg/m³	W/m•K	Btu/hr•ft•F	Btu•in/hr•ft²•°F		-
Timbers ³		200				
Balsa	140	0.060	0.035	0.416	4	0.9
Birch, yellow	660	0.160		1.109	4	0.9
Redwood, old growth	410	0.110	0.064	0.763	2	0.9
Redwood, new growth	370	0.100	0.058	0.693	4	0.9
Cedar, Atlantic white	340	0.090	0.052	0.624	4	0.9
Cedar, Eastern red	480	0.120	0.069	0.832	4	0.9
Cedar, Northern white	310	0.090	0.052	0.624	4	0.9
Cedar, Port-Orford	430	0.110	0.064	0.763	4	0.9
Cedar, Western red	330	0.090	0.052	0.624	4	0.9
Cedar, yellow	460	0.120	0.069	0.832	4	0.9
Cypress, bald	470	0.120	0.069	0.832	4	0.9
Elm, American	540	0.140	0.081	0.971	4	0.9
Elm, Rock	670	0.170	0.098	1.179	4	0.9
Elm, Slippery	560	0.140	0.081	0.971	4	0.9
Fir, balsam	370	0.100		0.693	4	0.9
Fir, white	410	0.110		0.763	4	0.9
Douglas-fir, coast	510	0.130		0.901	4	0.9
Douglas-fir, interior north	500	0.130	0.075	0.901	4	0.9
Douglas-fir, interior west	520	0.130	0.075	0.901	4	0.9
Hemlock, eastern	420	0.110		0.763	4	0.9
Hemlock, western	480	0.120		0.832	4	0.9
Larch (western)	560	0.140	0.081	0.971	4	0.9
Mahogany	550	0.130	0.075	0.901	2, 7	0.9
Maple, black	600	0.150		1.040	4	0.9
Maple, red	560	0.140	0.081	0.971	4	0.9
Maple, silver	500	0.130	0.075	0.901	4	0.9
Maple, sugar	660	0.160	0.092	1.109	4	0.9
Oak, black	660	0.160		1.109	4	0.9
Oak, bur	660	0.160		1.109	4	0.9
Oak, Northern red	650	0.160	0.092	1.109	4	0.9
Oak, Southern red	620	0.150	0.087	1.040	4	0.9
Oak, white	720	0.180		1.248	4	0.9
Pine, Eastern white	370	0.100		0.693	4	0.9
Pine, jack	450	0.120		0.832	4	0.9
Pine, loblolly	540	0.140		0.971	4	0.9
Pine, lodgepole	430	0.110		0.763	4	0.9
Pine, longleaf	620	0.150		1.040	4	0.9
Pine, pitch	530	0.130		0.901	4	0.9
Pine, ponderosa	420	0.110		0.763	4	0.9

NFRC 101-2020_[E0A4] page 35

IBAR-INT-ST23-UFC-TC-13-R4

Name	Density¹ (ρ)		Conduc (k)	Source ²	Emissivity (ε)	
	kg/m³	W/m•K	Btu/hr•ft•F	Btu•in/hr•ft²•°F		-
Pine, Radiata	500	0.120	0.069	0.832	4	0.9
Pine, red	460	0.120	0.069	0.832	4	0.9
Pine, shortleaf	540	0.140	0.081	0.971	4	0.9
Pine, slash	610	0.150	0.087	1.040	4	0.9
Pine, sugar	370	0.100	0.058	0.693	4	0.9
Pine, Western white	400	0.110		0.763	4	0.9
Spruce, black	430	0.110	0.064	0.763	4	0.9
Spruce, Engelmann	370	0.100		0.693	4	0.9
Spruce, red	420	0.110	0.064	0.763	4	0.9
Spruce, Sitka	420	0.110	0.064	0.763	4	0.9
Spruce, white	370	0.100	0.058	0.693	4	0.9
Wood based panels	4000	0.000	0.400	4.505		
Cement-bonded particleboard	1200	0.230		1.595	1	0.9
Cement-bonded wood wool panels	500	0.100	0.058	0.693	1	0.9
Cement-bonded wood wool panels	700	0.140	0.081	0.971	1	0.9
Fiberboard (medium density, dry process)	250	0.070	0.040	0.485	1	0.9
Fiberboard (medium density, dry process)	400	0.100	0.058	0.693	1	0.9
Fiberboard (medium density, dry process)	600	0.140	0.081	0.971	1	0.9
Fiberboard (medium density, dry process)	800	0.180	0.104	1.248	1	0.9
Oriented strand board (OSB)	650	0.130	0.075	0.901	1	0.9
Particleboard	300	0.100		0.693	1	0.9
Particleboard	600	0.140		0.971	1	0.9
Particleboard	900	0.180		1.248	1	0.9
Plywood	300	0.090		0.624	1	0.9
Plywood	500	0.130		0.901	1	0.9
Plywood	700	0.170		1.179	1	0.9
Plywood	1000	0.240		1.664	1	0.9
Insulating Materials			I .	1		
Aerogel – Silica	73	0.024		0.166	10	0.9
Cellular glass	136	0.051	0.029	0.354	2	0.9

NFRC 101-2020_[E0A4] page 36

Name	Density ¹ (ρ)	(k)			Source ²	Emissivity (ε)
	kg/m³	W/m•K	Btu/hr•ft•F	Btu•in/hr•ft²•°F		-
Cellulose, sprayed into open cavities	42	0.040	0.023	0.277	10	0.9
Cellulosic fiber	56	0.040	0.023	0.277	2	0.9
Glass fiber, batts	8.2	0.048	0.028	0.333	2	0.9
Glass fiber, batts	12	0.043	0.025	0.298	2	0.9
Glass fiber, batts	14	0.039	0.023	0.027	2	0.9
Glass fiber (semi-rigid)	-	0.034	0.020	0.236		
Sheathing					2	0.9
Glass fiber (spray applied)	16	0.042	0.024	0.291	2	0.9
Glass wool	50-60	0.033	0.019	0.229	1	0.9
Mineral fiber-low density (rock, slag, glass)	64	0.042	0.024	0.291	2	0.9
Phenolic foam board with facing	-	0.023	0.013	0.159	2	0.9
Polyisocyanurate-unfaced, aged	37	0.025	0.014	0.173	2	0.9
Polyisocyanurate – foil-faced, aged	7-	0.023	0.013	0.159	2	0.9
Polystyrene expanded, molded beads (EPS)	16	0.037	0.021	0.257	2	0.9
Polystyrene expanded, molded beads (EPS)	24	0.035	0.020	0.243	2	0.9
Polystyrene expanded, molded beads (EPS)	29	0.033	0.019	0.229	2	0.9
Polyester fiber	25	0.038	0.022	0.263	1	0.9
Polyester fiber	35	0.036		0.250	1	0.9
Polyester fiber	45	0.035		0.243	1	0.9
Polyurethane foam, HFC 245fa blown	31	0.020		0.139	18	0.9
Polyurethane foam, HFC 134a blown	-	0.023	0.013	0.159	18	0.9
Polyurethane foam, cyclopentane blown	-	0.020	0.012	0.139	18	0.9
Straw thatch	240	0.070	0.040	0.485	2	0.9
Masonry Materials					l	
Concrete – medium density	1,800	1.15	0.664	7.974	1	0.90
Concrete – high density	2,400	2.00		13.867	1	0.90
Concrete – reinforced (2% steel)	2,400	2.50		17.334	1	0.90
Brick, Fired clay – high density	2,400	1.47	0.849	10.192	2	0.90
Brick, Fired clay – medium density	1,600	0.74	0.428	5.131	2	0.90

NFRC 101-2020_[E0A4] page 37

IBAR-INT-ST23-UFC-TC-13-R4

Name	Density ¹ (ρ)		Conduct	Source ²	Emissivity (ε)	
	kg/m³	W/m•K	Btu/hr•ft•F	Btu•in/hr•ft²•°F		· -
Brick, Fired clay – low density	1,120	0.45	0.260	3.120	2	0.90
Gypsum plasterboard	640	0.160	0.092	1.109	2	0.90

Metals						
Aluminum	2700	237	136.94	1643.24	8	0.9
Aluminum alloy 195 cast (4.5	2790	168	97.07	1164.83	8	0.9
Cu)						
Aluminum alloy 2024 T6 (4.5 Cu, 1.5 Mg, 0.6 Mn)	2770	177	102.27	1227.23	8	0.9
Aluminum alloy 1100-O	2713	221.90	128.21	1538.54	2, 7	0.9
Aluminum alloy 3003-O	2713	163.28	94.34	1132.13	7	0.9
Aluminum alloy 5056-O	2630	117.23	67.73	812.81	7	0.9
Aluminum alloy (96% Al, 1.8% Cu, 0.9% Fe, 0.9% Cr, 0.4% Si)	-	104.67	60.48	725.73	9	0.9
Aluminum bronze (76% Cu, 22% Zn, 2% Al)	8280	100	57.78	693.35	2	0.9
Aluminum bronze (95% Cu, 5% Al)	7800	82.6	47.73	572.71	9	0.9
Bronze	8,700	65	37.56	450.68	1	0.20
Brass	8,400	120	69.34	832.02	1	0.20
Copper	8,900	380	219.56	2634.72	1	0.80
Iron, cast	7,500	50	28.89	346.67	9	0.80
Lead	11,300	35	20.22	242.67	9	0.80
Steel (0.1% Carbon at 0°C)	7850	59	34.09	409.08	9	0.9
Steel (0.2% Carbon at 20°C)	7850	50	28.89	346.67	9	0.9
Steel (0.6% Carbon at 20°C)	7850	46.5	26.87	322.41	9	0.9
Zinc	7200	110	63.56	762.68	17	0.28

¹ Densities shown are nominal values. Densities of actual materials may vary and do not need to be verified by NFRC certified simulators.

NFRC 101-2020[E0A4] page 38

Numbers listed in this column refer to documents listed in Section 10.2
 Values are for 6% moisture content, see Appendix D. This value may be applied to products of any moisture content for the purposes of this document.